

100 ANOS A PENSAR NO FUTURO

Teacher

Name: Leonor Santiago Pinto

e-mail: lspinto@iseg.utl.pt

Office: 506 Quelhas Building

Bibliography

- F.S. Hillier, G.J. Lieberman, Introduction to Operations Research, 9th edition, McGraw-Hill, International Edition, New York, 2010;
- M.C. Mourão, L. Santiago Pinto, O. Simões, J. Valente, M.V. Pato, *Investigação Operacional: Exercícios e Aplicações*, 1ª edição, Verlag Dashöfer, Lisboa, 2011 (in portuguese)

Assessment Process

- During the break week there will be a midterm exam that covers the first half of the program. In the "época Normal" (EN) there will be a second midterm that covers the second half of the program. In this day students who wish may choose to repeat the evaluation of the first half of the program. Each half of the program has a 50% worth of the final grade .
- Students who do not get a grade higher than or equal to 9.5 in the average of the two mini-tests or examination of EN, or a minimum of (8 in 20, in each mid term) will be submitted to the "época de Recurso".
- Students who obtain 17.5 or more and would like to have a final grade greater than 17 may be called to an oral exam.
- It is allowed to consult 1 A4 sheet in the midterms and 2 A4 sheets in the other exams .
- Calculating machines are not allowed, neither in the exams nor in the midterms.
- All that is not specified above follows the "Regime Geral de Avaliação de Conhecimentos".

Links

INFORMS - Institute of Operations Research and MAnagement Sciences

https://www.informs.org/

APDIO - Associação Portuguesa de Investigação Operacional (portuguese association)

http://apdio.pt/home

Investigação Operacional. InternetLink

"Operations Research. Models and Methods. Internet", Paul O. Jensen

www.me.utexas.edu/~jensen/ ORMM

Instituto Superior de Economia e Gestão UNIVERSIDADE TÉCNICA DE LISBOA

https://engineering.stanford.edu/people/frederick-s-hillier

Gerald J. Lieberman 31/12/1925 -18/5/1999

ORMS By Vijay Mehrotra

And then one day Tom Cook come into town to give a department seminar. Dr. Cook was already one of my heroes, an academic turned management consultant turned airline industry executive/management science champion. When he was asked about what training he thought was most important for success in industry, his answer was both direct and surprising

"Give me someone who really understands the Hillier and Lieberman book and who can communicate well with people, and I can almost guarantee you that they will make a big contribution to our company," said the head of operations research at American Airlines. But no bigger than the one that Jerry himself made to our profession.

In honor of you, Jerry, I'm taking the rest of the day off. Reference: 1. 1997, Kimball Medal citation.

"<u>https://www.informs.org/ORMS-Today/Archived-Issues/orms-8-99/Academic-Descendant-of-Prof.</u> Lieberman

Organization	Area of Application	Section	Annual Savings
Federal Express	Logistical planning of shipments	1.3	Not estimated
Continental Airlines	Reassign crews to flights when schedule disruptions occur	2.2	\$40 million
Swift & Company	Improve sales and manufacturing performance	3.1	\$12 million
Memorial Sloan-Kettering	Design of radiation therapy	3.4	\$459 million
Cancer Center			A. J. 1999
United Airlines	Plan employee work schedules at airports and reservations offices	3.4	\$6 million
Welch's	Optimize use and movement of raw materials	3.3	\$150,000
Samsung Electronics	Reduce manufacturing times and inventory levels	4.3	\$200 million more revenue
Pacific Lumber Company	Long-term forest ecosystem management	6.7	\$398 million NPV
Procter & Gamble	Redesign the production and distribution system	8.1	\$200 million
Canadian Pacific Railway	Plan routing of rail freight	9.3	\$100 million
United Airlines	Reassign airplanes to flights when disruptions occur	9.6	Not estimated
U.S. Military	Logistical planning of Operations Desert Storm	10.3	Not estimated
Air New Zealand	Airline crew scheduling	11.2	\$6.7 million
Taco Bell	Plan employee work schedules at restaurants	11.5	\$13 million
Waste Management	Develop a route-management system for trash collection and disposal	11.7	\$100 million

....

TABLE 1.1 Applications of operations research to be described in application vignettes

Organization	Area of Application	Section	Annual Savings
Bank Hapoalim Group	Develop a decision-support system for investment advisors	12.1	\$31 million more revenue
Sears	Vehicle routing and scheduling for home services and deliveries	13.2	\$42 million
Conoco-Phillips	Evaluate petroleum exploration projects	15.2	Not estimated
Workers' Compensation Board	Manage high-risk disability claims and rehabilitation	15.3	\$4 million
Westinghouse	Evaluate research-and-development projects	15.4	Not estimated
Merrill Lynch	Manage liquidity risk for revolving credit lines	16.2	\$4 billion more liquidity
PSA Peugeot Citroën	Guide the design process for efficient car assembly plants	16.8	\$130 million more profit
KeyCorp	Improve efficiency of bank teller service	17.6	\$20 million
General Motors	Improve efficiency of production lines	17.9	\$90 million
Deere & Company	Management of inventories throughout a supply chain	18.5	\$1 billion less inventory
Time Inc.	Management of distribution channels for magazines	18.7	\$3.5 million more profit
Bank One Corporation	Management of credit lines and interest rates for credit cards	19.2	\$75 million more profit
Merrill Lynch	Pricing analysis for providing financial services	20.2	\$50 million more revenue
AT&T	Design and operation of call centers	20.5	\$750 million more profit

TABLE 1.1 Applications of operations research to be described in application vignettes

Course contents:

- 1. Linear Programming
- 2. The Simplex Method
- 3. Duality and Sensitivity Analysis
- 4. The Transportation and the Assignment Problems
- 5. Network Optimization
- 6. Integer Linear Programming

Objectives of the course:

The objective of this course is to introduce the students to the wide field of applications for (integer) linear programming and network models, as well as provide basic knowledge of the respective mathematical models.

Students will be required to apply very simple algorithms and dominate the resolution of (integer) linear programming problems with the Solver/Excel software. Special emphasis will be given to the economic interpretation of results.

Detailed program:

- 1. Linear Programming (LP)
- 1.1 Introduction
- **1.2** Formulation and Graphical Solution
- **1.3** Definitions and Properties
- 1.4 Solving Problems by Solver/Excel

2. Simplex Method

- 2.1 Introduction
- 2.2 Augmented Form and Basic Feasible Solutions
- 2.3 Simplex Algorithm

3. Duality and Sensitivity Analysis

- 3.1 Introduction
- 3.2 Duality
- **3.3** Economic Interpretation of Duality. Shadow Prices. Primal-Dual Relations
- 3.4 Sensitivity Analysis
 - Changes in the Right-Hand Sides of the Constraints
 - Changes in the Coefficients of the Objective Function

- 4. Transportation and Assignment Problems
- 4.1 Introduction
- 4.2 Transportation Problem
- 4.3 Assignment Problem
- 5. Network Optimization
- 5.1 Introduction
- 5.2 Minimum Cost Flow Problem
- 5.3 Shortest-Path Problem
- 5.4 Minimum Spanning Tree Problem
 - Prim Algorithm
- 6. Integer Linear Programming (ILP)
- 6.1 Introduction
- 6.2 Integer Linear Programming Problems
- 6.3 Graphical and Solver/Excel Solution
- 6.4 Formulations with Binary Variables

1. Linear Programming (LP)

1.1 Introduction

1.2 Formulation and Graphical Solution

1.3 Definitions and Properties

1.4 Solving Problems by Solver/Excel

Prototype Example 1

 $x_1 - no.$ batches of P1 produced per week (P1=8-foot glass door with aluminum framing) $x_2 - no.$ batches of P2 produced per week (P2=4×6 foot double-hung wood framed window) Z - total profit per week (in thousands of dollars) from producing these two products

Linear Programming (LP) Model:

$$Max Z = 3x_1 + 5x_2$$

$$s.t. \begin{cases} x_1 & \leq 4 \\ & 2x_2 \leq 12 \\ 3x_1 + 2x_2 \leq 18 \\ & x_1, x_2 \geq 0 \end{cases}$$

LP model – standard form

 $Z^* = Max \ Z = \sum_{j=1}^n c_j x_j$ Objective Function (OF)

s.t. $\begin{cases} \sum_{j=1}^{n} a_{ij} x_j \le b_i & i = 1, 2, ..., m \\ x_j \ge 0 & j = 1, 2, ..., n \end{cases}$ Functional Constraints Sign Constraints

Decision variable: x_j (j = 1, ..., n) represents level of activity j

Data:

c_i coefficient on the objective function of the decision variable *j*;

 b_i righ-hand-side (RHS) of the functional constraint *i*;

 a_{ii} technical coefficient of the decision variable *j* on the functional constraint *i*.

 c_{j}, b_{i} and a_{ij} are called **the parameters** of the LP model

Assumptions of Linear Programming

Proportionality: The contribution of each activity (*j*) to the value of the objective function and to the left-hand-side of the constraints is proportional to the level of the activity (x_i) .

Instituto Superior de Economia e Gestão

Additivity: The value of the objective function and the value of the left-hand-side of the constraints are the sum of the individual contributions of the various activities.

Divisibility: The variables assume real values $(x_i \in R)$.

Certainty: Every coefficient (also called parameter) is assumed to be a known constant.

Definitions I

Solution of an LP – a vector of \mathbb{R}^n which components are the values of the variables;

Feasible Solution (FS) – a solution that satisfies all the constraints (functional and sign);

Non Feasible Solution (NFS) – a solution that does not satisfy at least one of the constraints;

Feasible Region (**FR**) – the set of all feasible solutions;

Optimal Solution (**OS**) – a feasible solution that gives the best value to the objective function (OF) (the best value=maximum or minimum);

Optimal value – the value of the objective function at an optimal solution;

Binding constraint in a solution – a constraint that hold with equality at that solution;

To solve an LP is to determine the optimal solution (or solutions) and the optimal value or to conclude that an optimal solution does not exist and why.

Graphical Method – Prototype Example 1

Max $z = 3x_1$	+	$5x_2$				
$\int x_1$			\leq	4	(R1)	
		$2x_2$	\leq	12	(R2)	
$\int 3x_1$	+	$2x_2$	\leq	18	(R3)	
$x_1,$	<i>x</i> ₂	≥	0			
ſ		$2x_{2}$	=	12	$\int x^{*} =$	= 2
ł		2 .02		· · · · ·		_
$\lfloor 3x_1 \rfloor$	+	$2x_2$	=	18	$\left(x^{*}_{2}\right)^{*}$	= 6
$Z^* =$	36					

Graphical Method

- 1) Represent (in the x_1 - x_2 plan) the FR = intersection of the half-plans defined by the constraints of the LP (functional and sign constraints);
- 2) If FR = { } the problem is infeasible. **STOP**.
- **3**) Otherwise (FR \neq { }) identify the optimal solution (or solutions), if any.
 - Set *Z* to *K* (arbitrarily fixed) and represent the line $c_1x_1 + c_2x_2 = K$. Identify the halfplan conducting to better values of *Z*. Then
 - Identify the optimal solution as the point in the FR with the best value of Z (it can be more than one), or
 - conclude that the problem is unbounded, (there is no optimal solution).

LP – solving by solver of excel – prototype example 1

Instituto Superior de Economia e Gestão UNIVERSIDADE TÉCNICA DE LISBOA

data								data
	A	В	С	D	E	F	G	Н
	1							
	2	plant	doors	windows	total		hours available/week	
	3	1	1	0	0	≤	4	
	4	2	0	2	0	≤	12	
	5	3	3	2	0	≤	18	
	6	profit	3	5	0			
	7 n	.batches	0	0				
	8							
	9						 E	-
init	ial	value						5:D3;\$C\$7:\$D\$7)
iiii	IUI	value						
							5 =SUMPRODUCT(C5	(D5; SCS7; SDS7)
							6 =SUMPRODUCT(C6	:D6;\$C\$7:\$D\$7)
							7	

36

LP – solving by solver of excel – prototype example 1

LP – solving by solver of excel – prototype example 1

Set Obj	ective:	\$E\$6			E
To:	• Max) Mi <u>n</u>) <u>V</u> alue Of:	0	
By Char	nging Variable Cel	s:			
\$C\$	7:\$D\$7				
S <u>u</u> bject	to the Constraint	is:			
ŚĘ¢	\$3·\$F\$5< 9	<u></u> ናርናን የር	\$5	A [<u>A</u> dd
Υ - γ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7075.70	20		<u>C</u> hange
					Delete
					<u>R</u> eset All
				-	<u>L</u> oad/Save
V Mak	e Unconstrained	Variables Non-N	Vegative		
S <u>e</u> lect a	Solving Method:	Sin	nplex LP	•	Options
Solving	g Method				
Select engine non-sr	the GRG Nonlinea for linear Solver nooth.	ar engine for So Problems, and	olver Problems that an select the Evolutionar	e smooth nonlinear. y engine for Solver p	Select the LP Simplex problems that are

1 a)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		В	С	D	E	F	G	Н	1	J	K	L	М	N
s. t. $\begin{cases} x_1 - 2x_2 \le 3 \\ x_1 + x_2 \le 3 \\ x_1, x_2 \ge 0 \end{cases}$ Return to Solver Parameters Dialog Outline Reports QK Qancel Solver found a solution. All Constraints and optimality conditions are satisfied. When the GRG engine is used, Solver has found at least a local optimal solution. When Simplex LP is used, this means Solver has found a global optimal solution.	$Max \ z = x_1 + 2.$	R1 R2 F0	x1 1 1 1 0	x2 -2 1 2 3	-6 3 6		Solver Resul	ts und a soluti ns are satisf Solver Soluti pore Original V	ion. All Con fied. ion	straints and	d optimali	ty Re <u>p</u> orts Answer Sensitivity Limits	X	
	s. t. $\begin{cases} x_1 - 2x_2 \le x_1 + x_2 \le 3 \\ x_1, x_2 \ge 0 \end{cases}$	3					CK Solver fo satisfied. When the solution. optimal	n to Solver F und a solution e GRG engin When Simp solution.	Parameters I <u>C</u> ancel on. All Cons ne is used, S olex LP is use	Dialog traints and olver has fo ed, this mea	optimality und at lea ans Solver I	Outline R	eports enario re imal ilobal	

1 b) infeasible

1 c) unbounded

